If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+20n+50=0
a = 2; b = 20; c = +50;
Δ = b2-4ac
Δ = 202-4·2·50
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$n=\frac{-b}{2a}=\frac{-20}{4}=-5$
| 1/2x-11=3 | | k/7=21 | | a-13=2a-75 | | (-3)(-4)(5)(-2)(3)=a | | 12y+4y-6y-9y+y=20 | | 3x=1# | | 5−2x=−4x−7 | | n+n+.5n+5=50 | | 15k-15k+k=19 | | 120/3=200/x | | 2p-39=p | | (x/3)+4=5 | | w+-18w=17 | | j–5=13 | | k=28.7 | | w+18w=17 | | n+n+.5n=50 | | 5-3m=143 | | 2p-39=2p-39 | | 56-4b=6b-2 | | 18z-15z-2z+z=12 | | 3y+2=y+74 | | 12=(x/7)+11 | | 4x=565 | | 8x•(-5)=60 | | x+2=√18-x | | 28=2(p-4) | | (x+2)/4=2 | | .5n+(n-8)=25 | | 4x=565.65 | | 18z-15-2z+z=12 | | -55r+150=0 |